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Abstract. An analysis is given of high-temperature series expansions for the susceptibility 
of an 0(2)-symmetric spin model with discretely valued spin-spin interaction on triangular 
and square lattices. This analysis does not yield strong evidence for a phase transition in 
either case, although it is weakly consistent with this possibility. We also comment on the 
high-temperature series for the free energy and specific heat. 

1. Introduction 

The critical properties of a statistical model are understood to depend on the space P 
in which the order parameter lies, the (zero-field) symmetry group G of the Hamiltonian 
or Euclidean action and the dimensionality, d. At a very general level, one may classify 
such a model according to whether P and G are discrete or continuous. In commonly 
studied models, the interaction between the fundamental variables, for example spins, 
is taken as a continuous function if these variables are continuous and discrete if they 
are discrete. One may ask what happens if the variables are continuous but the 
interaction is discrete. In particular, if one takes a given model with continuous P, G 
and interaction, and changes this interaction to a discretely valued one, does this 
change the universality class of the model? Introducing a discretely valued interaction 
in a model with continuous variables yields a far-reaching property of non-zero 
ground-state disorder. However, this disorder is not necessarily associated with any 
frustration. What effect does this type of ground-state disorder have on the model? 

These questions were first investigated by Guttmann et a1 (1972), Guttmann and 
Joyce (1973) and Guttmann and Nymeyer (1978). These authors considered an O(2)- 
symmetric spin model with a (nearest-neighbour) spin-spin interaction of the form 
sgn(S, SI) .  They obtained an exact (zero-field) solution in one dimension which 
showed that the model remained disordered, with finite correlation length and no 
long-range order, for all temperatures including T = 0. They calculated high- 
temperature series expansion on 3~ lattices for the (zero-field) specific heat and, using 
also a discretised form for the coupling to an external magnetic field, namely sgn(H. S , ) ,  
they calculated high-temperature series expansions for a certain quantity analogous 
to the susceptibility. From these, they concluded that for dimensionality d = 3, the 
model was in the same universality class as the regular 0(2)-symmetric spin model 
with interaction S,  * S,. 
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Realisations of models with continuous variables but discretely valued interactions 
(in conjunction with continuously valued interactions) subsequently arose and were 
studied in the context of topological excitations in 4~ U( 1) lattice gauge theory (Barber 
et al 1985, Barber and  Shrock 1985, Labastida et al 1986) and the 3~ O(2) model 
(Kohring et al 1986, Kohring and Shrock 1987). The complexity of the discretely 
valued operators in these models (an integer-valued twelve-angle monopole density 
operator in the 4~ U(1) lattice gauge theory and a four-spin vortex density operator 
in the 3~ O(2) spin model) motivated an  investigation of the simplest realisation, 
namely that in which the discretely valued operator involves only nearest-neighbour 
spins and takes on only two discrete values. 

Thus a further study was carried out by Lee and  Shrock (1987,1988). This included 
exact solutions of the O ( N )  version of the sgn spin model for dimensionality d = 1 
and of a modified Gaussian model for arbitrary d with the usual interaction J E,&/ 

of the real-valued site variables E, (where (ij) denotes nearest-neighbour pairs) replaced 
by the discretely valued interaction J X(II) sgn(E,g). In both cases, the model with 
discretised interaction behaved quite differently from the model with the regular 
continuous interaction; for example, the modified Gaussian model was in the Ising 
universality class. For the 3~ sgn O(2) model, high-temperature series expansions for 
the susceptibility were calculated. It was found that the susceptibility exponent y 
obtained from an analysis of these expansions on various lattices was consistent with 
being equal to that for the regular 3~ O(2) model and with being equal to the exponent 
describing the singularity of the function studied by Guttmann and  collaborators, so 
that, in this case, the O(2) models with discrete and continuous interactions were in 
the same universality class. Analysis of the specific heat series yielded the same 
conclusion. Finally, Monte Carlo measurements were made of the nearest-neighbour 
correlation function or internal energy, and  of the magnetisation in the model. 

The effect of discrete interactions in a model with continuous variables has been 
more difficult to understand for d = 2 than for other dimensionalities. The exact result 
on the modified Gaussian model with discrete interaction (Lee and  Shrock 1987) 
provides an  example showing that the universality class can be changed here, as it is 
in this model for all d. The 2~ O(2) model with a sgn(S, SI)  interaction has been 
studied, beginning with the work of Guttmann and  Joyce (1973). The purpose of the 
present paper is to give high-temperature series expansions for the susceptibility of 
this model which complement the series of Guttmann and collaborators and to analyse 
these. 

The paper is organised as follows. In § 2 the model is defined and a review is given 
of previous work. In § 3 the susceptibility series are discussed. Section 4 contains an  
analysis of these series. Some comments are also given concerning the series for the 
free energy and  specific heat. Section 5 contains our conclusions. In order to render 
the paper reasonably self-contained, we shall repeat some notation given in our earlier 
work. 

2. The model 

The reference model with continuous spin variables and spin-spin interaction is the 
(classical) O(2)  model (also called the plane rotator model), with Hamiltonian 

x= -J  c s, s, - H . C  s, (2.1) 
( v )  6 
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where SI = (cos el, sin e,) E S ’  and ( 0 )  denotes nearest-neighbour pairs of lattice sites 
i and j .  To study the effect of a discrete interaction, a simple and natural choice is to 
replace the usual scalar product spin-spin interaction by sgn(S, * S,) .  This yields a 
model defined by the partition function 

( 2 . 2 ~ )  

where 

J J --is 

is the unit-normalised measure on S I ,  p = (kBT)-‘  and 

2 = -J sgn(S, S,) - H .  S, 
( V )  I 

It will be convenient to define K p J  and 

(2.26) 

v = tanh K .  (2.3) 

For the square (sq) lattice, a well known mapping shows that the ferromagnetic ( J  > 0) 
case of (2.1) is equivalent to the antiferromagnetic case, and similarly for (2.2). In 
contrast, for triangular (t) lattice, the antiferromagnetic case of (2.1) is frustrated and 
behaves differently from the ferromagnetic version. 

First, one must ask whether for d = 2 the model (2.2) has a phase transition at all. 
If it does, then one must determine whether the universality class of this transition is 
the same as that ofthe regular 2~ O(2) (plane rotator) model (2.1). The Mermin-Wagner 
theorem (Mermin and Wagner 1966) forbids spontaneous breaking of the global O(2) 
symmetry and associated long-range order in this model. Nevertheless, the model does 
exhibit a phase transition, which has been understood (Kosterlitz and Thouless 1973, 
Kosterlitz 1974) as being due to the dissociation of vortex pairs as the temperature 
increases through T,. In this theory, the free energy and other quantities such as 
specific heat, susceptibility and correlation length exhibit essential singularities at the 
critical temperature. Guttmann and Joyce (1973) studied a model with both the 
spin-spin interaction and the coupling to an external field rendered discrete, namely 
( 2 . 2 ~ )  with 

2 = - J  sgn(S;S,)-Csgn(H.S,) .  
(Y) I 

A susceptibility-like function for this model would be 

1 + 2  C (sgn(A. s,) sgn(A.  s,)) 
( Y )  

(2.4) 

(where, in our notation, each pair (U) = ( j i )  is counted only once in the sum). For 
reasons of calculational simplicity, instead of analysing this function, Guttmann and 
collaborators calculated high-temperature series for the function 

From an analysis of the high-temperature series for (2.6) on the trianglar lattice 
(Guttmann and Joyce 1973), it was concluded that ‘the Pad6 table does not support 
a singularity of the assumed form’, x( U )  - A( U, - U)-’. A later study of the model on 
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the trianglar lattice (Guttmann 1978) confirmed this earlier result, finding 'some 
evidence for a singularity, but no convincing evidence for either an essential or an 
algebraic singularity.' The same conclusion was reached from a series analysis of the 
model on the square lattice (Guttmann and Nymeyer 1978) and, by an alternate method, 
for both the square and triangular lattices (Nymeyer and Guttmann 1985). From a 
different approach, using approximate Migdal-Kadanoff recursion relations (Barber 
1983), it has been asserted that the 2~ sgn O(2) model does not have any phase transition 
at finite temperature, but rather is disordered for all non-zero T. Recently, Monte 
Carlo simulations have been carried out and have been interpreted first as showing 
that there is no phase transition (Nymeyer and Irving 1986). However, the opposite 
conclusion, that the sgn O(2) model does exhibit a phase transition, was reported quite 
recently (SBnchez-Velasco and Wills 1988) from an extensive Monte Carlo study using 
finite-size scaling methods. 

In earlier work, the present authors calculated and analysed high-temperature series 
expansions for the susceptibility of the sgn O(2) model on an arbitrary lattice. In view 
of the current interest in the behaviour of the 2~ sgn O(2) model, it seems worthwhile 
to record our series calculations and analyses for this model. These complement the 
earlier series work by Guttmann and collaborators since we have calculated the actual 
susceptibility d M / d H  for the model (2.2) with the usual coupling to the external 
magnetic field, whereas these earlier authors studied the different function (2.6) for 
the model (2.4). As will be seen, our series, although of different structure than those 
of Guttmann and co-workers, yield conclusions in very good agreement with those 
reached by these authors. 

3. High-temperature susceptibility series 

It is convenient to define the reduced susceptiblity 

which can be calculated via the usual formula 

f = 1 + 2  ( S i * S j ) .  
(r j)  

(3.2) 

As was shown in Lee and Shrock (1987), the natural high-temperature expansion 
variable for the susceptibility is 

B = 2 v / r .  (3.3) 
We thus write, for a given lattice A, 

As a consequence of a general theorem proved for the O ( N )  generalisation of (2.2) 
(Lee and Shrock 1987), it follows that 

b,,,/ = ( b % , r ) i s r n g  for l < l , , p  (3.5) 
where lp denotes the first order where a non-chain graph contributes to x, and ( b  , , l ) l s , ng  

is the susceptibility coefficient in the high-temperature expansion for f in the Ising 
model, namely ( f . J l s l n g =  1 +Z;"=, (b, ,  I)ls,ngur. The l , , p  are 

for A = t  
for A =  sq. 
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Table 1. Susceptibility series coefficients b,,f for the triangular lattice. 

n bt.1 

Table 2. Susceptibility coefficients bsq,, for the square lattice. 

n bSd 

4 
12 
36 
100 
2 8 4 - i ~ ~  
780 -in4 
2172 + 6 ~ ’  -?r4 -&r6 
5916+ 1 2 ~ ~ -  1 4 n 4 - & r 6  

We list our results for the series coefficients b$, ,  in tables 1 and 2 for the triangular 
and square lattices, respectively. 

Because of the property (3.5), the susceptibility series have the interesting and 
unusual feature that in low orders they are Ising like (in terms of the variable a)  
whereas, as 1 increases above 14,p, they deviate from the corresponding Ising series 
and exhibit the true thermodynamic properties of the model (2.2). The susceptibility 
series coefficients b ,,/ are polynomials in r,  of degree zero for 1 < l j q P  and increasing 
in order and complexity for larger 1. They are thus structurally rather different from 
the coefficients in the high-temperature series expansion of the function (2.6) calculated 
by Guttmann and Joyce (1973) and Guttmann and Nymeyer (1978), which were integer 
or rational. 

4. Analysis of series 

We have analysed the high-temperature susceptibility series (3.4) for the triangular 
and square lattices using the ratio test, Neville tables and Pad6 approximants (see 
Gaunt and Guttmann 1974, Baker 1975). It is appropriate, at the beginning, to examine 
the series for the simplest form of singularity, namely an algebraic one. If indeed the 
susceptibility has an essential divergence, then, if fitted to an algebraic form, it would 
correspond formally to a susceptibility exponent y = CO, since the divergence is more 
rapid than any power. Thus, for an analysis based on a finite series expansion, a signal 
of a possible essential divergence would be a value of y which is unusually large as 
compared with the typical values which describe spin models. 
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We thus take 

for the close-packed triangular lattice, and 

for the loose-packed square lattice, where A( 6) and B( 6) \ are analytic. The second 
term in (4.1 b) is present because of the above-mentioned mapping between a ferromag- 
netic and antiferromagnetic version of a spin model on a loose-packed lattice, which 
implies that, if the free energy is singular at K = K ,  2 0, then it it has the same singularity 
at K = - K c ,  and similarly with its derivatives. 

Using the expansion 

( 4 . 2 ~ )  

and defining the critical amplitude as 

A , =  ‘44.0 (4.2b) 

and similarly for B( ii), the generic form for the dominant singularity of the susceptibility 
can be expressed as 

f ( i i )  t - A t ( 1 -  V / ( V , )  \)-’. (4.3) 

The higher orders of the Pad6 tables for d In f(ij)/dii are given in tables 3 and 4 
for the triangular and square lattices, respectively. In the [ N ,  91 entry in each table 
the upper number is the pole at ii = 6, and the lower number is minus the residue at 
this pole, namely the exponent y. 

Table 3. Pad6 table for d In ,y(d)/dd for the triangular lattice. In each [A“, 91 entry, the 
upper number is the pole at 0 = ( dc)t and the lower is the corresponding value of y. The 
‘a’ indicates an approximant with a spurious, nearly coincident pole-zero pair closer to 
the origin than the pole listed. The ‘b’ refers to the fact that for the [ l ,  5 1  Padi, there is 
also a pole at d = 0.389 01, which gives rise to a very large value for y. 

2 0 1 2 3 4 5 

1 

2 

3 

4 0.313 29 
2.816 

5 0.374 45b 

0.309 22 0.325 60 0.333 16 
2.660 3.444 3.952 

0.309 22 0.309 30” 0.340 20 
2.660 2.663a 4.667 

0.323 72 0.33499 0.333 89i0 .058  31i 
3.449 4.404 - 

0.331 93 0.312 10” 
4.076 3.028“ 

0.354 41 10.055 20i 

6 0.361 88 *00.049 98i 
- 
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Table 4. Pad6 table for d In x( G)/dG for the square lattice. In each [.V, 91 entry the upper 
number is the pole at ts = ( GL)l and the lower is the corresponding value of y. The notation 
‘a’ has the same meaning as in table 3. A typical complex pair (CP) is the [1,4]  entry, 
0.4478 i 0.17371. 

9 0 1 2 3 4 5 6 

1 

2 

3 

4 

5 0.405 05 
1.246 

6 CP 
- 

7 0.439 94 
1.517 

0.455 83 
2.289 

CP 0.493 67 
- 3.707 

0.460 85 0.505 99 
2.288 4.594 

CP 
- 

0.498 10 0.537 05 0.405 57 
3.766 5.916 0.828 7 

0.455 83 0.564 25 0.505 57“ 
2.288 8.668 4.069“ 

0.455 40” 0.477 18 
2.279” 2.837 

0.510 55 
5.072 

These results do not give firm evidence for any critical singularity of the assumed 
algebraic form (4.1). From general experience with series expansions for the susceptibil- 
ity and other quantities, one expects that the series for the close-packed triangular 
lattice should yield the most stable values for a hypothetical critical point and exponent. 
As is evident from table 3, however, the Pad6 approximants do not give stable values 
for either a critical point (pole in d In ,f(B)/dB) or the associated exponent y. Indeed, 
at the highest order calculated, many of the entries, including that for the [3,3] 
approximant, do not even yield a pole in d In ,f( 6)/d6 on the real-6 axis, but rather 
a complex pair of poles. If one were to force this analysis to fit a singularity, then it 
would weakly indicate ( 6Jt = 0.33 f 0.04 (i.e. ( z.‘,)~ = 0.52 f 0.06, or ( KJt = 0.58 f 0.08), 
with the unusually large critical exponent yS2.7 .  These findings from our analysis 
using the actual susceptibility series are in excellent agreement with the conclusions 
of Joyce and Guttmann (1973), cited above, from their study of the function (2.6). In 
particular, although these authors concluded that their series did not give convincing 
evidence for any singularity, they noted that if one were to force a fit to a critical 
singularity of the form (4.1), then their analysis would give ( U,)~ - 0.5 and an associated 
exponent - 3. 

The Pad6 approximants for the susceptibility series on the square lattice presented 
in table 4 are also not highly stable. However, again, if one were to force the 
approximants to fit the singularity (4.1), then one would conclude that (fi& = 
0.49 f 0.04 (i.e. ( z.,),~ = 0.77 f 0.06, ( Kc)sq = 1.0 f 0.15). Again, the lack of any convinc- 
ing singularity for the model on the square lattice is in agreement with the conclusions 
reached by Guttmann and Nymeyer (1978) from their different series. It should, 
however, be noted that the critical value (Kc)sq which we obtained if the assumption 
of a singularity was forced is consistent, to within the respective uncertainties, with 
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the value ( KJsq = 0.91 * 0.04 at which SBnchez-Velasco and Wills (1988) have recently 
reported evidence for a phase transition from Monte Carlo simulations. 

It is also useful to compare these results with the regular 2~ O(2) model, to the 
same order. To do this, we have taken the known high-temperature series expansion 
for the susceptibility, as a function of K,  from Ferer et a1 (1973) and have calculated 
the dlog Pad6 in the same manner. As an example, we find the Pad6 table given as 
table 5 for the triangular lattice. One sees a substantially more stable value for the 
critical point and critical exponent, as compared with the results in the corresponding 
table 3 for the sgn O(2) model on the same lattice. In this context, it is worthwhile to 
recall that the basic mechanism of vortex dissociation, which drives the phase transition 
of the usual 2~ O(2) model, should not play a significant role in any hypothetical 
transition in the 2~ sgn O(2) model (Guttmann and Nymeyer 1978). This is clear, since 
one can easily exhibit configurations of spins which would yield a non-zero vortex 
charge but which have the same internal energy as configurations with zero vortex 
charge. 

In addition to calculating high-temperature series expansions for the susceptibility, 
we have also calculated such expansions for the free energy and specific heat. For the 
specific heat per site, C, we write (with k g =  1) 

Our results for the square lattice are in complete agreement with those of Guttmann 
and Nymeyer (1978), which, indeed, extend to higher order. For the triangular lattice, 
the specific heat series coefficients listed by Guttmann and Joyce (1973) for the 2~ 

Table 5. Central part of the Pad6 table for d In X ( K ) / d K  for the O(2) (plane-rotator) 
model on the triangular lattice. In each 21 entry, the upper number is the value (K,),,,, 
of the pole in d In X(K) /dK and the lower is the corresponding value of y. The superscript 
'aa' indicates two spurious, nearly coincident, pole-zero pairs closer to the origin than the 
physical pole (and the superscript 'a' has the same meaning as in table 3). 

A " 

a 0 1 2 3 4 5 6 

1 

2 

3 

4 0.308 562 
2.394 1 

5 0.315 226 
2.711 5 

6 * 
* 

0.310 102" 
2.449 5" 

0.309 787" 
2.440 0" 

0.302 148" 
2.234 7" 

0.308 697 
2.400 0 

0.309 7 H a  
2.440 0'' 

0.310 046"" 
2.448 2"" 

0.313 159"" 
2.553 P'' 

0.308411 0.312181 * 
2.388 5 2.538 1 

0.305 608" 0.305 385" * 
2.319 0" 2.315 0" 

0.305 387'' 0.305 613"" 
2.3 15 0' 2.319 1"" 

0.313 314"" 
2.560 7"" 

* 
* * 

* 

* 
* 

7 * 
* 
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O(2) step model actually refer not to C / k ,  but to ( v / K ) ’ C / k ,  (Guttmann 1987). 
(However, the coefficients listed for comparison for the 2~ Ising and regular O(2) 
models in this reference do refer to C/ k, .) Taking into account this factor, our specific 
heat: series for the triangular (t) lattice agrees with that of Guttmann and Joyce (1973) 
to the highest order we have checked, namely O(v9), with the exception of the O(v7) 
term, for which we obtain ct., = -%, which differs slightly from the value = -lo 
obtained by Guttmann and Joyce (1973). This difference does not significantly change 
the conclusions reached from analysis of the specific heat series concerning a possible 
phase transition in the 2~ sgn O(2) model. 

27 1 

5. Conclusions 

In summary, we have presented high-temperature series expansions for the susceptibil- 
ity of the 2~ sgn O(2) model and have analysed these to investigate possible critical 
behaviour. We do not find any strong evidence for a critical singularity, but our Pad6 
tables are weakly consistent with a possible phase transition. Our analysis complements, 
and is in excellent agreement with, the earlier study by Guttmann and co-workers 
using high-temperature series expansions for the function (2.6). The subtlety of the 
effect of switching from the usual continuous Si- Sj interaction to the sgn(Si.Sj) in 
the 2~ O(2) model is not unexpected, since this has the effect, roughly speaking, of 
increasing the disorder in the model. For d = 1, this increase in disorder was sufficient 
to render the theory disordered and non-critical for all T, including T = 0. In contrast, 
for d =3,  although the increase in disorder reduces the magnetisation, it does not 
remove the phase transition, and, indeed, does not change the universality class of 
this transition. The case d = 2  falls between these dimensionalities and can thus be 
expected to be more of a borderline situation. 
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